skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fujii, Michiko S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We introduce new high-resolution galaxy simulations accelerated by a surrogate model that reduces the computation cost by approximately 75%. Massive stars with a zero-age main-sequence mass of more than about 10Mexplode as core-collapse supernovae (CCSNe), which play a critical role in galaxy formation. The energy released by CCSNe is essential for regulating star formation and driving feedback processes in the interstellar medium (ISM). However, the short integration time steps required for SN feedback have presented significant bottlenecks in astrophysical simulations across various scales. Overcoming this challenge is crucial for enabling star-by-star galaxy simulations, which aim to capture the dynamics of individual stars and the inhomogeneous shell’s expansion within the turbulent ISM. To address this, our new framework combines direct numerical simulations and surrogate modeling, including machine learning and Gibbs sampling. The star formation history and the time evolution of outflow rates in the galaxy match those obtained from resolved direct numerical simulations. Our new approach achieves high-resolution fidelity while reducing computational costs, effectively bridging the physical scale gap and enabling multiscale simulations. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  2. Abstract Metal-poor stars enriched by a single supernova (mono-enriched stars) are direct proof (and provide valuable probes) of supernova nucleosynthesis. Photometric and spectroscopic observations have shown that metal-poor stars have a wide variety of chemical compositions; the star’s chemical composition reflects the nucleosynthesis process(es) that occurred before the star’s formation. While the identification of mono-enriched stars enables us to study the ejecta properties of a single supernova, the fraction of mono-enriched stars among metal-poor stars remains unknown. Here we identify mono-enriched stars in a dwarf galaxy cosmological zoom-in simulation resolving individual massive stars. We find that the fraction of mono-enriched stars is higher for lower metallicity in stars with [Fe/H]  < −2.5. The percentages of mono-enriched stars are 11% at [Fe/H] =  −5.0 and 1% at [Fe/H] =  −2.5, suggesting that most metal-poor stars are affected by multiple supernovae. We also find that mono-enriched stars tend to be located near the center of the simulated dwarf. Such regions will be explored in detail in upcoming surveys such as the Prime Focus Spectrograph on the Subaru telescope. 
    more » « less
    Free, publicly-accessible full text available February 13, 2026